-
专家视点 数据无处不在的云原生途径
所属栏目:[大数据] 日期:2022-05-19 热度:134
使用 Kubernetes 进行架构是必不可少的核心部分,它使数据分析异常灵活,可在业务需要的任何地方运行,并以高并发、高性能、效率和可用性大规模运行。 从金融服务和保险到制造和医疗保健等垂直领域的无数企业发现,他们需要公共和私有云、混合和边缘部署来[详细]
-
大数据研究引用挑战预测增加
所属栏目:[大数据] 日期:2022-05-19 热度:161
尽管大数据行业有大量的软件平台和产品、开发人员和数据专业人士,以及许多热心的爱好者,但对于专业数据工作者和管理人员来说,在企业中实施数据战略仍然存在一些担忧和障碍。 数据分析平台提供商Unsupervised公司日前发表了一项名为2022年大数据恐惧和预[详细]
-
大数据分析是啥?
所属栏目:[大数据] 日期:2022-05-19 热度:187
大数据分析:是指对规模巨大的数据进行分析,大数据可以概括为:数据量大,速度快,类型多,价值、真实性。 大数据可以概括为5个V, 数据量大、速度快、类型多、价值、真实性。 1.可视化分析 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具[详细]
-
数据分析师七大实力 梳理标签体系
所属栏目:[大数据] 日期:2022-05-19 热度:170
大家好,我是爱学习的小xiong熊妹。 这次分享一个更高级能力:构造标签体系。在提升能力的顺序上,当然是先会打一个标签,再会搞整个体系了。 一、什么是标签体系? 围绕一个业务场景,实现业务闭环操作的若干个标签组合,称为标签体系。之所以需要标签体系[详细]
-
真正指挥大规模战争的其实为大数据和人工智能?
所属栏目:[大数据] 日期:2022-05-19 热度:155
大数据和人工智能到底有多强?大部分人仍然没有直观体会,但实际上已经渗透进当今地球和人类活动的方方面面。也正在深刻地改变世界的固有形态。那些过去的超级强国,在这方面仍然遥遥领先,而那些没有跟上潮流的90%以上的国家,其实早就彻底躺平;最主要的是[详细]
-
生活中无处不在的数据解析
所属栏目:[大数据] 日期:2022-05-19 热度:79
关于数据分析的问题 很多时候,会被一些刚刚入门或者入门两三年的同学问:数据分析就是提数据吗?为什么我感觉我像个工具人一样天天写SQL做报表呢?! 每到这个时候,我就想起来了我入行的那个夏天,每天乐此不疲的跑着SQL。好像自己那会儿没有思考过这个[详细]
-
基于数据解析给出运营建议 咋整?
所属栏目:[大数据] 日期:2022-05-19 热度:124
有同学问:如何基于数据分析提出运营建议,今天我们拿个简单的题目来举例。这个题目陈老师之前讲过,有印象的同学应该还记得。再举一次,是因为每到招聘季都有人把它搬出来,而且有关它的大部分讲解,都是错的。 已知,下图是某个电商一周销售金额走势(具[详细]
-
大数据技术的用处和它的五大核心原理
所属栏目:[大数据] 日期:2022-05-19 热度:176
大数据的用途 大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未被重视。大数据工程是指大数据的规划建设运营管理的系统工程;大数据科学关注大数据网络发展和运营过程[详细]
-
2022年三个主要的数据分析趋向
所属栏目:[大数据] 日期:2022-05-19 热度:196
数据分析是一个不断发展的领域。2020年初发生新冠疫情成为主要的破坏因素,企业需要大力投资数据分析以支持其数字化转型。 在新冠疫情蔓延初期,很多企业减少开支并专注于其他紧迫的优先事项(例如支持员工远程工作),这似乎可能会阻碍数据和分析的进步。但[详细]
-
Flink 在 B 站的多元化探索与践行
所属栏目:[大数据] 日期:2022-05-19 热度:68
本文整理自哔哩哔哩基础架构部资深研发工程师张杨在 Flink Forward Asia 2021 平台建设专场的演讲。主要内容包括: 1.1 基础功能完善 在平台的基础功能方面,我们做了很多新的功能和优化。其中两个重点的是支持 Kafka 的动态 sink 和任务提交引擎的优化。[详细]
-
HDFS 为什么在大数据领域经久不衰?
所属栏目:[大数据] 日期:2022-05-19 热度:167
HDFS 为何在大数据领域经久不衰? 1.概述 1.1 简介 Hadoop实现的一个分布式文件系统(Hadoop Distributed File System),简称HDFS。 源自于Google的GFS论文,发表于2003年,HDFS是GFS的克隆版。 大数据中最宝贵、最难以代替的就是数据,一切都围绕数据。 HD[详细]
-
Java开发人员需要明白的地域分布数据库
所属栏目:[大数据] 日期:2022-05-19 热度:147
在过去的七年里,我一直在使用分布式系统、平台和数据库。早在2015年,许多架构师就开始使用分布式数据库扩展单个机器或服务器的边界。他们选择这样的数据库是因为它的水平可伸缩性,尽管它的性能依然只能与传统的单服务器数据库相媲美。 现在,随着云原生[详细]
-
紧跟业务发展速度的数据治理是啥样的
所属栏目:[大数据] 日期:2022-05-19 热度:107
如今企业要获取数据,物联网(Internet of things,IoT)设备、可穿戴设备、软件即服务(Software as a Service,SaaS)应用程序和社交媒体都是来源。对这些数据的组合和深入分析可以为企业提供新的洞察力,并助力企业发现潜在商机。通过将这些能力在企业内扩[详细]
-
何为经营分析?为什么大厂这么重视它
所属栏目:[大数据] 日期:2022-05-19 热度:101
上周一连有两个大厂(短视频、游戏)的朋友来聊经营分析,着实让我好奇了一下。经营分析这个东西,以往都是传统国企做得多,咋连他们也开始纠结了。 聊完才发现:地主家也没余粮呀!toC互联网的流量见顶,成本增高,让原本花钱如泼水的大厂也得重视效益考核,[详细]
-
视频时代的大数据 问题 挑战与处理方案
所属栏目:[大数据] 日期:2022-05-19 热度:67
视频时代的大数据 问题 挑战与处理方案: 一、介绍 人们所观察的世界无时无刻不在改变,造就了视频相比于文本等类型的数据更具表现力,包含更加丰富的信息。如今,能够产生视频的数据源及应用场景愈发多样,视频数据的规模不断增长,视频大数据成为支撑诸[详细]
-
数据分析的12个神话被揭露
所属栏目:[大数据] 日期:2022-05-19 热度:166
从数据问题到人员需求再到技术组合,数据分析的误解比比皆是。下面我们来看看如何利用数据科学来实现真正的业务成果。 在IT领域,炒作越大,误解越多,数据分析也不例外。分析是当今信息技术最热门的方面之一,可以带来巨大的商业收益,但错误的观念可能会[详细]
-
为何企业必须采用大数据战略?
所属栏目:[大数据] 日期:2022-05-19 热度:70
智能企业利用各种形式的海量数据来更好地了解消费者、管理库存、优化物流和运营程序,并做出合理的业务选择。成功的公司也认识到处理他们产生的大量大数据的重要性,以及发现可靠的方法来从中提取洞察力。制定大数据战略以正确有效地存储、组织、处理和利[详细]
-
数据分析,如何赐能业务?
所属栏目:[大数据] 日期:2022-05-19 热度:184
做工作规划的时候,有很多公司都提出要求,要数据赋能业务/赋能销售/赋能运营到底啥玩意是赋能,咋个赋能法???往往领导又丢回一句你要多想想啊让人着实无奈。今天我们系统解答一下。 前方剧透警报:因为大量用了电视剧《亮剑》的梗,所以忘记的同学们可以[详细]
-
数据分析七大实力 梳理数据需求
所属栏目:[大数据] 日期:2022-05-19 热度:136
大家好,我是爱学习的小xiong熊妹。 今天分享数据分析师必备的工作能力需求梳理。需求梳理很不起眼,甚至很多小伙伴感受不到他的存在。但它结结实实影响到大家的下班时间和绩效。 一、什么是数据需求? 顾名思义,数据需求,就是业务部门对数据分析产出的需[详细]
-
运用大数据进行营销的9种最佳方法
所属栏目:[大数据] 日期:2022-04-01 热度:109
大数据驱动营销业务的发展如今比以往任何时候都更加重要,所以需要战略性地使用这些实践。 对于很多企业来说,大数据已经成为一项非常具有价值的技术资产,并利用大数据改善业务。数据分析和人工智能技术的一些最佳实践已经出现在营销领域。 数据驱动营销[详细]
-
2022年数据可视化的主要趋向
所属栏目:[大数据] 日期:2022-04-01 热度:142
大数据改变不同行业的例子不胜枚举。它可以用于减少交通堵塞、个性化产品和服务、改善视频游戏体验等视觉效果。 毫无疑问,大量非结构化数据的收集和分析已经是一个巨大的突破。人们需要了解数据可视化及其在大数据应用中的作用。 如果没有将人们所寻找的[详细]
-
组建高效分析团队的7个最佳实行
所属栏目:[大数据] 日期:2022-04-01 热度:69
数据驱动的成功取决于强大、多样化、跨职能的数据团队。IT领导者需要采用创建和维护团队的技巧,以提供敏锐的数据洞察力。 如果企业部署了最新和最好的数据分析工具,但未能组建高效的分析团队,那么会发生什么?将会失去创收机会,并浪费大量的时间和费用[详细]
-
通过更好的数据质量改进决策的8个重要提醒
所属栏目:[大数据] 日期:2022-04-01 热度:162
企业对良好数据质量的需求日益增长,人们需要了解如何获得良好的数据质量以及它如何影响决策。 搜索引擎上有关数据质量这一术语多达600万项,这清楚地表达了数据质量的重要性及其在决策场景中的关键作用。了解数据有助于对其进行分类和鉴定,以便在所需场[详细]
-
大数据和人工智能如何完全改变支付方式
所属栏目:[大数据] 日期:2022-04-01 热度:110
事实表明,数据技术的进步和发展使虚拟卡和电子钱包更适合支付管理。 数据如今已经成为企业必不可少的资产,而金融行业是从数据中受益的主业行业之一。通过解释和分析数据,企业可以了解和预测趋势、提高安全性,并做出数据驱动的决策。大数据和人工智能技[详细]
-
数据科学家将数据科学技能转化成收入的最佳方式
所属栏目:[大数据] 日期:2022-04-01 热度:141
各种数据如今呈现出爆炸式增长,这为数据科学家创造了更多获利的机会,可以将其具有的数据科学技能实现货币化,从而赚取更多的收入。从数据科学中获得收入有多种方法,因为数据科学是有效数据管理的广阔领域。除了在知名公司从事朝九晚五的专业工作之外,[详细]